Agriculture and Agri-Food Canada |
|
Service health Now: |
---|
Agriculture and Agri-Food Canada (unverified)
Contact information:
Agri-Geomatics
Agriculture and Agri-Food Canada
Canada
Email:
The Evaporative Stress Index (ESI) describes temporal anomalies in evapotranspiration (ET), highlighting areas with anomalously high or low rates of water use across the land surface. Here, ET is retrieved via energy balance using remotely sensed land-surface temperature (LST) time-change signals. LST is a fast- response variable, providing proxy information regarding rapidly evolving surface soil moisture and crop stress conditions at relatively high spatial resolution. The ESI also demonstrates capability for capturing early signals of "flash drought", brought on by extended periods of hot, dry and windy conditions leading to rapid soil moisture depletion. ESI values quantify standardized anomalies (σvalues) in the ratio of clear-sky actual-to-potential ET (fPET), derived using thermal infrared (TIR) satellite imagery from geostationary platforms. To capture a range in timescales, fPET composites are developed for 1, 2 and 3 month moving windows, advancing at 7-day intervals. Standardized anomalies are then computed with respect to normal conditions (mean and standard deviation) for each compositing interval assessed over a period of record from 2000-2015. For more information, visit: http://open.canada.ca/data/en/dataset/679f676a-330a-456f-9928-a4fafc95f9f8
evaporative_stress_index_4_week (0)
The Evaporative Stress Index (ESI) describes temporal anomalies in evapotranspiration (ET), highlighting areas with anomalously high or low rates of water use across the land surface. Here, ET is retrieved via energy balance using remotely sensed land-surface temperature (LST) time-change signals. LST is a fast- response variable, providing proxy information regarding rapidly evolving surface soil moisture and crop stress conditions at relatively high spatial resolution. The ESI also demonstrates capability for capturing early signals of "flash drought", brought on by extended periods of hot, dry and windy conditions leading to rapid soil moisture depletion. ESI values quantify standardized anomalies (σvalues) in the ratio of clear-sky actual-to-potential ET (fPET), derived using thermal infrared (TIR) satellite imagery from geostationary platforms. To capture a range in timescales, fPET composites are developed for 1, 2 and 3 month moving windows, advancing at 7-day intervals. Standardized anomalies are then computed with respect to normal conditions (mean and standard deviation) for each compositing interval assessed over a period of record from 2000-2015. For more information, visit: http://open.canada.ca/data/en/dataset/679f676a-330a-456f-9928-a4fafc95f9f8
There are currently no notifications for the service, click the feed icon to subscribe.